137 research outputs found

    High resolution X-ray photoemission study of nitrogen doped TiO 2 rutile single crystals

    Get PDF
    Abstract The electronic structure of nitrogen doped TiO 2 prepared by annealing single crystal rutile (1 1 0) substrates in NH 3 at elevated temperatures was investigated using high resolution X-ray photoelectron spectroscopy. NH 3 treatment at 600°C introduced N into the TiO 2 lattice without concomitant surface reduction of the rutile phase. This doping leads to bandgap narrowing associated with the appearance of new N 2p electronic states above the O 2p band in valence region photoemission spectra. Surface modification at the higher temperature of 700°C also produced bandgap narrowing but at the same time led to pronounced surface reduction

    Intelligent Multifunctional VO2/SiO2/TiO2 Coatings for Self-Cleaning, Energy-Saving Window Panels

    Get PDF
    Monoclinic vanadium(IV) oxide (VO2) has received much attention for applications as intelligent solar control coatings, with the potential to reduce the need for both heating and air conditioning loads within building infrastructure. Chemical vapor deposition, a high-throughput industrially scalable method, is an ideal technology for the deposition of VO2 thin films on window panels. However, these films suffer from poor adhesion and are chemically susceptible to attack. In addition, the VO2 films with optimum solar modulation are unfortunately translucent, restraining their commercial use in energy-efficient fenestration. In this work, multifunctional, robust, layered VO2/SiO2/TiO2 films were quickly deposited on glass substrates using atmospheric-pressure chemical vapor deposition and fully characterized using structural, vibrational spectroscopy, and electron microscopy techniques. The VO2/SiO2/TiO2 thin films were designed to exhibit excellent solar modulation properties as well as high transparency and resistance to abrasion, compared to single VO2 films of the same thickness. The films also showed self-cleaning properties comparable to those of commercial Pilkington Activ glass, as demonstrated here during the photodegradation of a model organic pollutant (stearic acid). The SiO2 acted as a barrier layer, preventing the diffusion of Ti4+ ions into the VO2 layer but it also promoted the optical properties and allowed for superior thermochromic behavior when compared to single VO2 films. The system was modeled to determine the effect of the individual components on the properties of the overall material. It was found that the deposition of the SiO2/TiO2 overlayer resulted in a dramatic improvement of visible-light transmission (∼30% increase when compared to single-layer analogues) while also doubling the solar modulation of the material

    Optimized Atmospheric-Pressure Chemical Vapor Deposition Thermochromic VO2 Thin Films for Intelligent Window Applications

    Get PDF
    Monoclinic vanadium(IV) oxide (VO2) has been widely studied for energy-efficient glazing applications because of its thermochromic properties, displaying a large change in transmission of near-IR wavelengths between the hot and cold states. The optimization of the reaction between VCl4 and ethyl acetate via atmospheric-pressure chemical vapor deposition (APCVD) was shown to produce thin films of monoclinic VO2 with excellent thermochromic properties (ΔTsol = 12%). The tailoring of the thermochromic and visible light transmission was shown to be possible by altering the density and morphology of the deposited films. The films were characterized by X-ray diffraction, atomic-force microscopy, scanning electron microscopy, ellipsometry, and UV–vis spectrometry. This article provides useful design rules for the synthesis of high-quality VO2 thin films by APCVD

    Preparation and characterisation of high-density ionic liquids incorporating halobismuthate anions

    Get PDF
    A range of ionic liquids containing dialkylimidazolium cations and halobismuthate anions ([BiBrxClyIz]− and [Bi2BrxClyIz]−) were synthesised by combining dialkylimidazolium halide ionic liquids with bismuth(III) halide salts. The majority were room temperature liquids, all with very high densities. The neat ionic liquids and their mixtures with 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide were characterised using Densitometry, Viscometry, NMR Spectroscopy, Electrospray Ionisation Mass Spectrometry (ESI), Liquid Secondary Ion Mass Spectrometry (LSIMS), Matrix-assisted Laser Desorption/Ionization Mass Spectrometry (MALDI), X-Ray Photoelectron Spectroscopy (XPS) and Thermogravimetric Analysis (TGA), to establish their speciation and suitability for high-temperature applications

    Visible Light Photo-oxidation of Model Pollutants Using CaCu3Ti4O12: An Experimental and Theoretical Study of Optical Properties, Electronic Structure, and Selectivity

    Get PDF
    [Image: see text] Charge transfer between metal ions occupying distinct crystallographic sublattices in an ordered material is a strategy to confer visible light absorption on complex oxides to generate potentially catalytically active electron and hole charge carriers. CaCu(3)Ti(4)O(12) has distinct octahedral Ti(4+) and square planar Cu(2+) sites and is thus a candidate material for this approach. The sol−gel synthesis of high surface area CaCu(3)Ti(4)O(12) and investigation of its optical absorption and photocatalytic reactivity with model pollutants are reported. Two gaps of 2.21 and 1.39 eV are observed in the visible region. These absorptions are explained by LSDA+U electronic structure calculations, including electron correlation on the Cu sites, as arising from transitions from a Cu-hybridized O 2p-derived valence band to localized empty states on Cu (attributed to the isolation of CuO(4) units within the structure of CaCu(3)Ti(4)O(12)) and to a Ti-based conduction band. The resulting charge carriers produce selective visible light photodegradation of 4-chlorophenol (monitored by mass spectrometry) by Pt-loaded CaCu(3)Ti(4)O(12) which is attributed to the chemical nature of the photogenerated charge carriers and has a quantum yield comparable with commercial visible light photocatalysts

    Particle size, morphology and phase transitions in hydrothermally produced VO2(D)

    Get PDF
    Different morphologies and sizes of VO 2 (D) particles were synthesised via hydrothermal synthesis using ammonium metavanadate (NH 4 VO 3 ) or vanadium pentoxide (V 2 O 5 ) as a vanadium precursor. By adjusting the concentration of vanadium precursors and the pH of the starting solution, a variety of morphologies and sizes of VO 2 (D) particles from 20 nm to 3 μm could be produced. A flower-shape morphology was obtained under strongly acidic conditions, passing through star-shape particles of 1 μm at pH 2.5 and finally obtaining homogeneous round balls of around 3 μm at pH 6.9. Nanoparticles were produced hydrothermally using V 2 O 5 as a precursor and hydrazine as a reducing agent. The transition from VO 2 (D) to thermochromic VO 2 (R) in micron scale particles occurred at 350 °C under vacuum. However, the nanoparticles of VO 2 (D) had a significantly lower VO 2 (D) to thermochromic VO 2 (R) transition temperature of 165 °C after annealing for only a few minutes. This is, to our knowledge, the lowest annealing temperature and time reported in the literature in order to obtain a thermochromic VO 2 material via another VO 2 phase. After the conversion of VO 2 (D) microparticles to thermochromic VO 2 (R), the metal to insulator transition temperature is 61 ± 1 °C for the heating cycle and 53 ± 1 °C for the cooling cycle. However, VO 2 (R) nanoparticles showed a significantly reduced metal insulator transition temperature of 59 ± 1 °C and 42 ± 1 °C for the cooling cycle lower than that reported in the literature for bulk VO 2 . This is important due to the need for having a compound with a switching temperature closer to room temperature to be used in smart window devices for energy consumption. W-VO 2 (D) star shape microparticle samples were prepared using 2-7 at% of the dopant (using ammonium metavanadate as a precursor), although unexpectedly this does not seem to be a viable route to a reduced metal to insulator transition in this system

    Direct and Continuous Hydrothermal Flow Synthesis of Thermochromic Phase Pure Monoclinic VO2 Nanoparticles

    Get PDF
    Monoclinic vanadium(IV) oxide [VO2(M)] is a widely studied material due to its thermochromic properties and its potential use in energy-efficient glazing applications. VO2(M) nanoparticles can be a great advantage for energy-efficient glazing as below 50 nm the nanoparticles poorly interact with visible wavelengths – resulting in an increase in visible light transmittance whilst maintaining the thermochromic response of the material. The direct synthesis of VO2(M) nanoparticles with effective thermochromic properties will be a step forward towards industrial applications of this material. Unfortunately, many of the synthesis processes reported so far involve multiple steps, including post-treatment, and the synthesis is not always reproducible. In this study, we present the first direct synthesis of pure monoclinic VO2 nanoparticles by continuous hydrothermal flow synthesis (CHFS). TEM images showed that nanoparticles in the size range of 30–40 nm were produced. The VO2(M) nanoparticles also showed good thermochromic properties with a solar modulation (ΔTsol) of 3.8%, as established by UV/Vis spectroscopy. A range of analytical methods was used to characterise the materials, including X-ray absorption spectroscopy (XANES and EXAFS), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM). The influence of niobium (Nb) doping on the physical and thermochromic properties of the VO2 nanoparticles was also explored. Previous work has shown a sharp metal-to-semiconductor transition of VO2 upon incorporation of a Nb dopant. The results of the current work suggested that these changes are likely due to changes on the local structure of the oxide

    Qualitative XANES and XPS Analysis of Substrate Effects in VO2 Thin Films: A Route to Improving Chemical Vapor Deposition Synthetic Methods?

    Get PDF
    Vanadium(IV) oxide thin films were synthesized via atmospheric pressure chemical vapor deposition by the reaction between vanadium(IV) chloride and ethyl acetate at 550 °C. The substrate was varied with films being deposited on glass, SnO2, and F-doped SnO2. The films were characterized by X-ray diffraction, X-ray photoelectron spectroscopy, UV–vis spectroscopy, scanning electron microscopy, and X-ray absorption near-edge structure. The influence of the electronic contribution of the substrate on the deposited VO2 film was found to be key to the functional properties observed. Highly electron-withdrawing substituents, such as fluorine, favored the formation of V5+ ions in the crystal lattice and so reduced the thermochromic properties. By considering both the structural and electronic contributions of the substrate, it is possible to establish the best substrate choices for the desired functional properties of the VO2 thin films synthesized
    • …
    corecore